Posted by : Moraliss Sunday, November 23, 2014

By Mayra Pierce


Nanotechnology refers to the manipulation of substances on the atomic and molecular level. Liposomes are small encapsulating bubbles that are microscopic in size, made of materials called phospholipids that mimic human cells, and have the property of being both attracted and repelled by water. Liposomal formulation includes the process that forms those bubbles, as well the encapsulation and delivery of the drugs contained within.

The significance of these very small vesicular forms that are able to enclose molecules soluble in water became apparent soon after being introduced during the 1960s. Pharmacists and research scientists became keenly aware of their potential to improve methods of drug delivery when fighting cancer and other serious illness. They encourage more accurate targeting of malicious cells while avoiding issues that plague other forms of administration.

The concept they use is radically different because it does not depend of standard modes of absorption typical of IV or oral administration. Conventional chemical processes can make management of specialized drugs more difficult. They are indiscriminate in their toxicity, and affect healthy organs as well, resulting in unnecessary damage and more lengthy recovery. When delivered via liposomes, release of toxic medication can be better controlled.

Molecules of medication are suspended in water inside these cellular structures, and encased in membranes created both naturally or artificially. They can be designed in ways that make them ideal mechanisms for enveloping hydrophilic drugs, or molecular groups that are attracted to and become easily transported in water. When manufactured using current processes, they form two groups called multilammelar and unilammelar, both of which include subcategories.

Individual liposomes surround the drug molecules with a membrane, and then transfer those medications to other cells when activated. Molecules can be released into the body by fusing certain layers with other physical cells, effectively delivering a small amount of medication. Others strategies rely on chemical reactions that encourage diffusion on a molecular level. The net result is a steadier, more controlled release.

This process is not only more effectively managed, but is also bio-compatible with human cells, and leaves no additional toxic residue. Some recently developed types of these capsules can be activated using ultrasound, which increases their efficacy in the locations where they are most needed. Others are dispensed via the respiratory system, and are directly deposited into the lungs and then slowly released, reducing overall toxicity.

It is still comparatively costly to manufacture these microscopic capsules. As practicality increases and research finds new uses and procedures, expenses will probably decrease, but still remain high. As is the case in most newer technologies, there are still many unresolved issues. Some forms of these artificial cells have had problems with wall or membrane leakage, while others have been degraded by oxidation and other natural processes.

Like other technologies developed for medicine, liposomes have a growing commercial use. They are being touted as superior methods of delivering vitamin, mineral, and herb formulations, and some individuals today even create their own supplements. While those uses are controversial in some aspects, the creation of new medication delivery and activation systems continues to provide new hope for more effective treatments.




About the Author:



Leave a Reply

Subscribe to Posts | Subscribe to Comments

Blog Archive

To Perfect Body. Powered by Blogger.

Copyright © To Perfect Body